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Process Mining

Wil M. P. van der Aalst: Process 
Mining - Data Science in Action, 
Second Edition. Springer 2016, 
ISBN 978-3-662-49850-7
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Event Logs 
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Procedural Process Models 
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Describes a process in terms of

… what rules are followed by the process

Allows flexibility in deciding

… how these rules are fulfilled

For example: X and Y can only occur after A has occurred

Note that the exact order and possibility of repetitions of X and Y is left open

The Declarative Approach in a Nutshell
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Positive examples:

✓

✓

✓

✓

Negative examples:









For example: X and Y can only occur after A has occurred

Note that the exact order and possibility of repetitions of X and Y is left open

B …

A X …

A X Y …

A …

X …

X Y …

X Y A …

X A Y …

The Declarative Approach in a Nutshell
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Processes are different

o Some are simple and can be modeled both fully and also in an

understandable way

Motivation for the Declarative Approach
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Business processes are different

o Some are simple and can be modeled both fully and also in an

understandable way

o And some are inherently too flexible to be modeled fully
o For example, treatment process of some disease

o … combined with every potential set of allergies each individual patient may have

o … and multiplied by different severity levels

Knowledge Intensive Processes!

Motivation for the Declarative Approach
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Process Mining for Software
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Procedural (imperative) paradigm

o Suitable for predictable processes 
o limited number of exceptions and deviations

o Focus on how things must be done

Declarative paradigm

o Suitable for unpredictable processes
o high number of exceptions and deviations

o Focus on what must be accomplished

Paradigms

Pasquale Ardimento, Mario Luca 
Bernardi, Marta Cimitile, Fabrizio Maria 
Maggi: Evaluating coding behavior 
in software development 
processes: a process mining 
approach. ICSSP 2019: 84-93 

Pasquale Ardimento, Lerina Aversano, 
Mario Luca Bernardi, Vito Alessandro 
Carella, Marta Cimitile, Michele Scalera: 
UML Miner: a tool for mining UML 
diagrams. MODELS-C 2023
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Let's take a blank model
o “Model” is in the box below

Nothing can happen
o As restrictive as possible

o Also, the model is invalid – we are even missing a place to start in

Procedural Paradigm
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Let’s add something

o Login must occur – still invalid

o Login must occur first – still invalid

o Start Session occurs immediately after Login – still invalid

Login
Start 

Session

Procedural Paradigm
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We need at least one full path from start to end

Supporting more process behaviour means adding more paths
o How to we cope with an ever-increasing model?

o Can we avoid overspecifying the process?

o Do we also add a path for something that occurs once in a million executions?

Login
Start 

Session
Open Shell …

…

…

…X X

Procedural Paradigm
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In theory, a procedural model will include all allowed execution 

paths

… while also excluding all prohibited execution paths

In practice, we very rarely follow the theory

… we might represent only the main flows

… we might exclude rare execution paths

… we might make simplifications even in the main flow

omitting intricacies of each decision, upper and lower bounds on repetition, etc.

Theory vs. Practice
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Let’s start again with a blank model
o “Model” is in the box below

The crucial difference – everything can happen
o As flexible as possible

o And could be seen as a valid model, although not a very useful one

15

Declarative Paradigm
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Let’s add something

o Login can occur – valid model and a bit more useful

o Login must occur first – valid model, even more useful

o Start Session occurs immediately after Login – valid again

Init

Login
Start 

Session

Declarative Paradigm
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But we are not required to go in the execution order

o If Open Shell occurs, then it is eventually followed by Exit Shell

o If Install Python occurs, then Install PyCharm also occurs and vice 

versa

Init

Login
Start 

Session

Install 

Python

Install 

PyCharm

Open Shell Exit Shell

Declarative Paradigm



Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 18

In fact, we can go in order of importance

o Describing the most important rules first, one by one, moving closer 

to the level of detail we wish to achieve

o And whatever is left undescribed, is up to the process workers to 

decide

Init

Login
Start 

session

Install 

Python

Install 

PyCharm

Open Shell Exit Shell

Declarative Paradigm
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Closed world – Procedural

o If it is not in the model, then it is not allowed

o Always explicit control flow

Open world – Declarative

o If it does not contradict the model, then it is allowed

o Mostly implicit control flow

o Sometimes tricky to understand

Closed World vs Open World
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One of the earliest and most popular declarative languages

A Declare model consist of constraints
o Each constraint defines some important aspect of the process

A constraint consists of…
o Template – The semantic meaning of the constraint

o Activity reference(s) – Activity or activities to which this meaning applies

An example of a simple constraint
o Template – The activity must exist

o Activity reference – ‘Login’

Declare Process Modeling Language

Maja Pesic, Helen Schonenberg, Wil 
M. P. van der Aalst: DECLARE: Full 
Support for Loosely-Structured 
Processes. EDOC 2007: 287-300
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Existence

Login
Start 

Session

Activation

Constraint on a single activity
(unary constraint)

Constraint between two activities
(binary constraint)

Logout

Visual Notation of Declare

Graph-based like BPMN, but not a flowchart
o Already used in previous parts of the tutorial

Activity nodes are not duplicated
o For example, if we also had: ‘Login’ is eventually followed by ‘Logout’

Target
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Existence

Login
Start 

Session

Furthermore

o Model can be disconnected

o Activities can appear without constraints
o Mostly for informative purposes, but can also be otherwise useful

Vacuous Satisfaction
o When the constraint is not activated: Login -> Start Session -> Logout

Constraint on a single activity
(unary constraint)

Constraint between two activities
(binary constraint)

Logout Open Log

Visual Notation of Declare

Open Shell Exit Shell
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Existence

A

Exactly2

A

Absence3

A

A occurs at least once

A occurs exactly twice

A occurs at most twice

Init

A A occurs first

End

A A occurs last

Unary Declare Templates

Used to define the cardinality or position of an activity
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A B

Used to define a relation between two activities

A B

A B

Response(A, B)

Alternate Response(A, B)

Chain Response(A, B)

If A occurs, then B occurs after A

Each time A occurs, then B occurs afterwards before A recurs

Each time A occurs, then B occurs immediately afterwards

Binary Declare Templates
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Additional examples (non-exhaustive)

A B

Succession (A, B)

A occurs if and only if it is followed by B
(Alternate and Chain Succession also possible)

A B

Not Succession (A, B)

A can never occur before B

(All binary templates can be negated)
A B

Choice (A, B)

A or B must occur at least once

Binary Declare Templates
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Formal Semantics of Declare

◼ Graphical representation 

◼ Semantics specified through LTL (for finite traces)

◼ LTL rules can be translated into automata

Giuseppe De Giacomo, Moshe Y. Vardi: 
Linear Temporal Logic and Linear 
Dynamic Logic on Finite Traces. IJCAI 
2013: 854-860

A B

Response(A, B)
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Data-Aware extension of Declare

Supports

o Conditions on event data

o Temporal conditions

[ booleanValue = True ]

A B

If A occurs with ‘booleanValue = True’, 

then within 3 to 5 hours
B occurs with ‘integerValue > 5’ after A

[ integerValue > 5 ]

[ between 3 and 5 hours ]

Multi-Perspective Declare (MP-Declare)

activation condition

time condition

target condition

Andrea Burattin, Fabrizio M. Maggi, 
Alessandro Sperduti Wil M. P. van 
der Aalst: Conformance checking 
based on multi-perspective 
declarative process models. 
Expert Syst. Appl. 65: 194-211 
(2016)
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Roadmap

Automated Process Discovery

Compliance Monitoring

Conformance Checking

Log Generation
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Process Discovery from knowledge intensive data
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Process Discovery from knowledge intensive data
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Process Discovery from knowledge intensive data
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Procedural Process Discovery
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Procedural Process Discovery
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Declarative Process Discovery

A is always
eventually
followed

by B
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Declarative Process Discovery

A or B 
always

occur but
never

together
A is always
eventually
followed

by B
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Declarative Process Discovery

A is always
eventually
followed

by B

A and B 
never

occur in 
sequence

A or B 
always

occur but
never

together
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

• finite number of constraint types 

• finite set of activities Fabrizio M. Maggi, R. P. Jagadeesh
Chandra Bose, Wil M. P. van der 
Aalst: Efficient Discovery of 
Understandable Declarative 
Process Models from Event 
Logs. CAiSE 2012: 270-285

A B A C

B A B C

C A C B
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A Parenthesis on Query Checking

W = [<A C B C>, <C B A C>, <A C A C A C B>]

• finite number of constraint types 

• finite set of activities

A ?x
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A Parenthesis on Query Checking

W = [<A C B C>, <C B A C>, <A C A C A C B>]

• finite number of constraint types 

• finite set of activities

A ?x

A B A C
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Query Checking

W = [<A C B C>, <C B A C>, <A C A C A C B>]

• finite number of constraint types 

• finite set of activities

A B A C

B A B C

C A C B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B A C

B A B C

C A C B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B
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Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B



Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 57

Discovery algorithm: Pruning

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C

C B
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C B

Discovery algorithm: Pruning

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C

W = [<A C B C>, <C B A C>, <A C A C A C B>]
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Discovery algorithm: Pruning

W = [<A C B C>, <C B A C>, <A C A C A C B>]

C B

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C
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Discovery algorithm: Pruning

W = [<A C B C>, <C B A C>, <A C A C A C B>]

C B

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C
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Discovery algorithm: Pruning

W = [<A C B C>, <C B A C>, <A C A C A C B>]

C B

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C
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Process Discovery

rulemining.org
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Roadmap

Automated Process Discovery

Compliance Monitoring

Conformance Checking

Log Generation
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Compliance
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Compliance Models

Exploit (E)
Malware 

Detection (M)

Start Session 

(S)

Close Session 

(C)

not coexistence

responded
existence

precedence
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Compliance Models

Exploit (E)
Malware 

Detection (M)

Start Session 

(S)

Close Session 

(C)

not coexistence

responded
existence

precedence
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Compliance Models

Exploit (E)
Malware 

Detection (M)

Start Session 

(S)

Close Session 

(C)

not coexistence

responded
existence

precedence
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Compliance Models

Exploit (E)
Malware 

Detection (M)

Start Session 

(S)

Close Session 

(C)

not coexistence

responded
existence

precedence
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RV-LTL Semantics

Andreas Bauer, Martin Leucker, Christian 
Schallhart: The Good, the Bad, and the Ugly, 
But How Ugly Is Ugly? RV 2007: 126-138
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“the good” (permanently sat)

RV-LTL Semantics
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“the bad” (permanently viol)

RV-LTL Semantics
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“inconclusive” (possibly sat)

“inconclusive” (possibly viol)

RV-LTL Semantics
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Sstart M E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael 
Westergaard, Wil M. P. van der Aalst: 
Monitoring Business Constraints 
with Linear Temporal Logic: An 
Approach Based on Colored 
Automata. BPM 2011: 132-147

Exploit (E)
Malware 

Detection (M)

Start Session 

(S)

Close Session 

(C)

not coexistence

responded
existence

precedence
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Sstart M E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael 
Westergaard, Wil M. P. van der Aalst: 
Monitoring Business Constraints 
with Linear Temporal Logic: An 
Approach Based on Colored 
Automata. BPM 2011: 132-147

Exploit (E)
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Close Session 
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existence
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Sstart M E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael 
Westergaard, Wil M. P. van der Aalst: 
Monitoring Business Constraints 
with Linear Temporal Logic: An 
Approach Based on Colored 
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Sstart M E

Monitoring Approach
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start M S E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael 
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start M S E

Monitoring Approach
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start M S E

Monitoring Approach
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start M S E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael 
Westergaard, Wil M. P. van der Aalst: 
Monitoring Business Constraints 
with Linear Temporal Logic: An 
Approach Based on Colored 
Automata. BPM 2011: 132-147

Exploit (E)
Malware 

Detection (M)

Start Session 

(S)

Close Session 

(C)

not coexistence

responded
existence

precedence
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Compliance Monitoring

rulemining.org
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Roadmap

Automated Process Discovery

Compliance Monitoring

Conformance Checking

Log Generation
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Conformance Checking with Declare Analyzer

A B A

A B

Andrea Burattin, Fabrizio M. Maggi, 
Alessandro Sperduti Wil M. P. van 
der Aalst: Conformance checking 
based on multi-perspective 
declarative process models. 
Expert Syst. Appl. 65: 194-211 
(2016)
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Conformance Checking with Declare Analyzer

A B

[ booleanValue = True ]

A B

[ integerValue > 5 ]

[ between 3 and 5 hours ]

activation condition

time condition

target condition

[ booleanValue = True ]

A

[ integerValue > 5 ]

[ between 3 and 5 hours ]

[ booleanValue = True ]
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Conformance Checking with Declare Analyzer

A B

[ booleanValue = True ]

A B

[ integerValue > 5 ]

[ between 3 and 5 hours ]

activation condition

time condition

target condition

[ booleanValue = True ]

A

[ integerValue > 5 ]

[ between 3 and 5 hours ]

[ booleanValue = False ]
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Conformance Checking with Declare Analyzer

A B

[ booleanValue = True ]

A B

[ integerValue > 5 ]

[ between 3 and 5 hours ]

activation condition

time condition

target condition

[ booleanValue = True ]

A

[ integerValue > 5 ]

[ between 3 and 5 hours ]

[ booleanValue = False ]

vacuous
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Conformance Checking with Trace Alignment

A B

[ booleanValue = True ]

A B

[ integerValue > 5 ]

[ between 3 and 5 hours ]

activation condition

time condition

target condition

A

[ between 3 and 5 hours ]

[ booleanValue = False ]

[ booleanValue = True ] [ integerValue <= 5 ]
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Conformance Checking with Trace Alignment

A B

[ booleanValue = True ]

A B

[ integerValue > 5 ]

[ between 3 and 5 hours ]

activation condition

time condition

target condition

[ booleanValue = True ]

A

[ integerValue > 5 ]

[ < 3 or > 5 hours ]

[ booleanValue = False ]
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Conformance Checking with Trace Alignment
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Trace Alignment

<A A D F C D E> 

Massimiliano de Leoni, Fabrizio M. 
Maggi, Wil M. P. van der Aalst: 
Aligning Event Logs and 
Declarative Process Models for 
Conformance Checking. BPM 
2012: 82-97

A B
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Trace Alignment

<A A D F C D E> 

A B
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Trace Alignment

<A A D F C D E B>
<A A D F C D E> 

A B
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Trace Alignment

<A A D F C D E> 

A B
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Trace Alignment

<A A D F C D E> 

A B
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Trace Alignment

<A A D F C D E>
<A A D F C D E>

A B
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Optimal Alignments

Modifications have a cost!
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Optimal Alignments

Modifications have a cost!

AUTOMATED PLANNING

Giuseppe De Giacomo, Fabrizio Maria 
Maggi, Andrea Marrella, Fabio Patrizi: 
On the Disruptive Effectiveness of 
Automated Planning for LTLf-Based 
Trace Alignment. AAAI 2017: 3555-
3561
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Conformance Checking

rulemining.org
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Roadmap

Automated Process Discovery

Compliance Monitoring

Conformance Checking

Log Generation
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Log Generation
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Log Generation

Exploit (E)
Malware 

Detection (M)

Start Session 

(S)

Close Session 

(C)

not coexistence

responded
existence

precedence
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Log Generation
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Log Generation

#traces in the log

#events in a trace

…
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Detection (M)

Start Session 

(S)

Close Session 

(C)

not coexistence

responded
existence

precedence



Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 104

❑ Log generation can be encoded in Answer Set Programming 

(ASP) using predicates and rules to define:
o Each constraint automaton of the input model

o The length of a trace to be generated

o The requirement that every automaton ends up in a final state in the last time 

point of the generated trace

❑ Predicate trace is the guessed predicate and contains a 

sequence of activities satisfying all the input constraints

❑ To generate a solution for the guessed predicate, an ASP 

solver can be used

o e.g., Clingo

Log Generation with ASP

Francesco Chiariello, Fabrizio M. 
Maggi, Fabio Patrizi: ASP-Based 
Declarative Process Mining. AAAI 
2022: 5539-5547
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Log Generation

rulemining.org
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For Python Users…

https://github.com/ivanDonadello/Declare4Py



Thank you

for your attention!
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