
Anti Alman University of Tartu

Ivan Donadello Free University of Bozen-Bolzano

Fabrizio M. Maggi Free University of Bozen-Bolzano

Declarative Process Mining for Software Processes:

The RuM Toolkit and the Declare4Py Python Library

Anti Alman University of Tartu

Ivan Donadello Free University of Bozen-Bolzano

Fabrizio M. Maggi Free University of Bozen-Bolzano

Declarative Process Mining for Software Processes:

The RuM Toolkit and the Declare4Py Python Library

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 2

Process Mining

Wil M. P. van der Aalst: Process
Mining - Data Science in Action,
Second Edition. Springer 2016,
ISBN 978-3-662-49850-7

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 3

Event Logs

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 4

Procedural Process Models

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 5

Describes a process in terms of

… what rules are followed by the process

Allows flexibility in deciding

… how these rules are fulfilled

For example: X and Y can only occur after A has occurred

Note that the exact order and possibility of repetitions of X and Y is left open

The Declarative Approach in a Nutshell

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 6

Positive examples:

✓

✓

✓

✓

Negative examples:









For example: X and Y can only occur after A has occurred

Note that the exact order and possibility of repetitions of X and Y is left open

B …

A X …

A X Y …

A …

X …

X Y …

X Y A …

X A Y …

The Declarative Approach in a Nutshell

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 7

Processes are different

o Some are simple and can be modeled both fully and also in an

understandable way

Motivation for the Declarative Approach

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 8

Business processes are different

o Some are simple and can be modeled both fully and also in an

understandable way

o And some are inherently too flexible to be modeled fully
o For example, treatment process of some disease

o … combined with every potential set of allergies each individual patient may have

o … and multiplied by different severity levels

Knowledge Intensive Processes!

Motivation for the Declarative Approach

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 9

Process Mining for Software

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 10

Procedural (imperative) paradigm

o Suitable for predictable processes
o limited number of exceptions and deviations

o Focus on how things must be done

Declarative paradigm

o Suitable for unpredictable processes
o high number of exceptions and deviations

o Focus on what must be accomplished

Paradigms

Pasquale Ardimento, Mario Luca
Bernardi, Marta Cimitile, Fabrizio Maria
Maggi: Evaluating coding behavior
in software development
processes: a process mining
approach. ICSSP 2019: 84-93

Pasquale Ardimento, Lerina Aversano,
Mario Luca Bernardi, Vito Alessandro
Carella, Marta Cimitile, Michele Scalera:
UML Miner: a tool for mining UML
diagrams. MODELS-C 2023

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 11

Let's take a blank model
o “Model” is in the box below

Nothing can happen
o As restrictive as possible

o Also, the model is invalid – we are even missing a place to start in

Procedural Paradigm

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 12

Let’s add something

o Login must occur – still invalid

o Login must occur first – still invalid

o Start Session occurs immediately after Login – still invalid

Login
Start

Session

Procedural Paradigm

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 13

We need at least one full path from start to end

Supporting more process behaviour means adding more paths
o How to we cope with an ever-increasing model?

o Can we avoid overspecifying the process?

o Do we also add a path for something that occurs once in a million executions?

Login
Start

Session
Open Shell …

…

…

…X X

Procedural Paradigm

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 14

In theory, a procedural model will include all allowed execution

paths

… while also excluding all prohibited execution paths

In practice, we very rarely follow the theory

… we might represent only the main flows

… we might exclude rare execution paths

… we might make simplifications even in the main flow

omitting intricacies of each decision, upper and lower bounds on repetition, etc.

Theory vs. Practice

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 15

Let’s start again with a blank model
o “Model” is in the box below

The crucial difference – everything can happen
o As flexible as possible

o And could be seen as a valid model, although not a very useful one

15

Declarative Paradigm

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 16

Let’s add something

o Login can occur – valid model and a bit more useful

o Login must occur first – valid model, even more useful

o Start Session occurs immediately after Login – valid again

Init

Login
Start

Session

Declarative Paradigm

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 17

But we are not required to go in the execution order

o If Open Shell occurs, then it is eventually followed by Exit Shell

o If Install Python occurs, then Install PyCharm also occurs and vice

versa

Init

Login
Start

Session

Install

Python

Install

PyCharm

Open Shell Exit Shell

Declarative Paradigm

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 18

In fact, we can go in order of importance

o Describing the most important rules first, one by one, moving closer

to the level of detail we wish to achieve

o And whatever is left undescribed, is up to the process workers to

decide

Init

Login
Start

session

Install

Python

Install

PyCharm

Open Shell Exit Shell

Declarative Paradigm

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 19

Closed world – Procedural

o If it is not in the model, then it is not allowed

o Always explicit control flow

Open world – Declarative

o If it does not contradict the model, then it is allowed

o Mostly implicit control flow

o Sometimes tricky to understand

Closed World vs Open World

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 20

One of the earliest and most popular declarative languages

A Declare model consist of constraints
o Each constraint defines some important aspect of the process

A constraint consists of…
o Template – The semantic meaning of the constraint

o Activity reference(s) – Activity or activities to which this meaning applies

An example of a simple constraint
o Template – The activity must exist

o Activity reference – ‘Login’

Declare Process Modeling Language

Maja Pesic, Helen Schonenberg, Wil
M. P. van der Aalst: DECLARE: Full
Support for Loosely-Structured
Processes. EDOC 2007: 287-300

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 21

Existence

Login
Start

Session

Activation

Constraint on a single activity
(unary constraint)

Constraint between two activities
(binary constraint)

Logout

Visual Notation of Declare

Graph-based like BPMN, but not a flowchart
o Already used in previous parts of the tutorial

Activity nodes are not duplicated
o For example, if we also had: ‘Login’ is eventually followed by ‘Logout’

Target

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 22

Existence

Login
Start

Session

Furthermore

o Model can be disconnected

o Activities can appear without constraints
o Mostly for informative purposes, but can also be otherwise useful

Vacuous Satisfaction
o When the constraint is not activated: Login -> Start Session -> Logout

Constraint on a single activity
(unary constraint)

Constraint between two activities
(binary constraint)

Logout Open Log

Visual Notation of Declare

Open Shell Exit Shell

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 23

Existence

A

Exactly2

A

Absence3

A

A occurs at least once

A occurs exactly twice

A occurs at most twice

Init

A A occurs first

End

A A occurs last

Unary Declare Templates

Used to define the cardinality or position of an activity

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 24

A B

Used to define a relation between two activities

A B

A B

Response(A, B)

Alternate Response(A, B)

Chain Response(A, B)

If A occurs, then B occurs after A

Each time A occurs, then B occurs afterwards before A recurs

Each time A occurs, then B occurs immediately afterwards

Binary Declare Templates

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 25

Additional examples (non-exhaustive)

A B

Succession (A, B)

A occurs if and only if it is followed by B
(Alternate and Chain Succession also possible)

A B

Not Succession (A, B)

A can never occur before B

(All binary templates can be negated)
A B

Choice (A, B)

A or B must occur at least once

Binary Declare Templates

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 26

Formal Semantics of Declare

◼ Graphical representation

◼ Semantics specified through LTL (for finite traces)

◼ LTL rules can be translated into automata

Giuseppe De Giacomo, Moshe Y. Vardi:
Linear Temporal Logic and Linear
Dynamic Logic on Finite Traces. IJCAI
2013: 854-860

A B

Response(A, B)

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 27

Data-Aware extension of Declare

Supports

o Conditions on event data

o Temporal conditions

[booleanValue = True]

A B

If A occurs with ‘booleanValue = True’,

then within 3 to 5 hours
B occurs with ‘integerValue > 5’ after A

[integerValue > 5]

[between 3 and 5 hours]

Multi-Perspective Declare (MP-Declare)

activation condition

time condition

target condition

Andrea Burattin, Fabrizio M. Maggi,
Alessandro Sperduti Wil M. P. van
der Aalst: Conformance checking
based on multi-perspective
declarative process models.
Expert Syst. Appl. 65: 194-211
(2016)

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 28

Roadmap

Automated Process Discovery

Compliance Monitoring

Conformance Checking

Log Generation

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 29

Process Discovery from knowledge intensive data

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 30

Process Discovery from knowledge intensive data

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 31

Process Discovery from knowledge intensive data

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 32

Procedural Process Discovery

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 33

Procedural Process Discovery

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 34

Declarative Process Discovery

A is always
eventually
followed

by B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 35

Declarative Process Discovery

A or B
always

occur but
never

together
A is always
eventually
followed

by B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 36

Declarative Process Discovery

A is always
eventually
followed

by B

A and B
never

occur in
sequence

A or B
always

occur but
never

together

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 37

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

• finite number of constraint types

• finite set of activities Fabrizio M. Maggi, R. P. Jagadeesh
Chandra Bose, Wil M. P. van der
Aalst: Efficient Discovery of
Understandable Declarative
Process Models from Event
Logs. CAiSE 2012: 270-285

A B A C

B A B C

C A C B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 38

A Parenthesis on Query Checking

W = [<A C B C>, <C B A C>, <A C A C A C B>]

• finite number of constraint types

• finite set of activities

A ?x

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 39

A Parenthesis on Query Checking

W = [<A C B C>, <C B A C>, <A C A C A C B>]

• finite number of constraint types

• finite set of activities

A ?x

A B A C

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 40

Query Checking

W = [<A C B C>, <C B A C>, <A C A C A C B>]

• finite number of constraint types

• finite set of activities

A B A C

B A B C

C A C B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 41

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B A C

B A B C

C A C B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 42

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 43

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 44

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 45

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 46

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 47

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 48

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 49

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 50

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 51

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 52

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 53

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 54

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 55

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 56

Discovery algorithm

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 57

Discovery algorithm: Pruning

W = [<A C B C>, <C B A C>, <A C A C A C B>]

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C

C B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 58

C B

Discovery algorithm: Pruning

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C

W = [<A C B C>, <C B A C>, <A C A C A C B>]

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 59

Discovery algorithm: Pruning

W = [<A C B C>, <C B A C>, <A C A C A C B>]

C B

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 60

Discovery algorithm: Pruning

W = [<A C B C>, <C B A C>, <A C A C A C B>]

C B

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 61

Discovery algorithm: Pruning

W = [<A C B C>, <C B A C>, <A C A C A C B>]

C B

A B A C

B A B C

C A C B

A B A C

B C

C B

A C

C A

B C

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 62

Process Discovery

rulemining.org

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 63

Roadmap

Automated Process Discovery

Compliance Monitoring

Conformance Checking

Log Generation

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 64

Compliance

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 65

Compliance Models

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 66

Compliance Models

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 67

Compliance Models

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 68

Compliance Models

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 69

RV-LTL Semantics

Andreas Bauer, Martin Leucker, Christian
Schallhart: The Good, the Bad, and the Ugly,
But How Ugly Is Ugly? RV 2007: 126-138

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 70

“the good” (permanently sat)

RV-LTL Semantics

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 71

“the bad” (permanently viol)

RV-LTL Semantics

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 72

“inconclusive” (possibly sat)

“inconclusive” (possibly viol)

RV-LTL Semantics

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 73

Sstart M E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael
Westergaard, Wil M. P. van der Aalst:
Monitoring Business Constraints
with Linear Temporal Logic: An
Approach Based on Colored
Automata. BPM 2011: 132-147

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 74

Sstart M E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael
Westergaard, Wil M. P. van der Aalst:
Monitoring Business Constraints
with Linear Temporal Logic: An
Approach Based on Colored
Automata. BPM 2011: 132-147

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 75

Sstart M E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael
Westergaard, Wil M. P. van der Aalst:
Monitoring Business Constraints
with Linear Temporal Logic: An
Approach Based on Colored
Automata. BPM 2011: 132-147

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 76

Sstart M E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael
Westergaard, Wil M. P. van der Aalst:
Monitoring Business Constraints
with Linear Temporal Logic: An
Approach Based on Colored
Automata. BPM 2011: 132-147

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 77

start M S E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael
Westergaard, Wil M. P. van der Aalst:
Monitoring Business Constraints
with Linear Temporal Logic: An
Approach Based on Colored
Automata. BPM 2011: 132-147

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 78

start M S E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael
Westergaard, Wil M. P. van der Aalst:
Monitoring Business Constraints
with Linear Temporal Logic: An
Approach Based on Colored
Automata. BPM 2011: 132-147

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 79

start M S E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael
Westergaard, Wil M. P. van der Aalst:
Monitoring Business Constraints
with Linear Temporal Logic: An
Approach Based on Colored
Automata. BPM 2011: 132-147

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 80

start M S E

Monitoring Approach
Fabrizio M. Maggi, Marco Montali, Michael
Westergaard, Wil M. P. van der Aalst:
Monitoring Business Constraints
with Linear Temporal Logic: An
Approach Based on Colored
Automata. BPM 2011: 132-147

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 81

Compliance Monitoring

rulemining.org

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 82

Roadmap

Automated Process Discovery

Compliance Monitoring

Conformance Checking

Log Generation

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 83

Conformance Checking with Declare Analyzer

A B A

A B

Andrea Burattin, Fabrizio M. Maggi,
Alessandro Sperduti Wil M. P. van
der Aalst: Conformance checking
based on multi-perspective
declarative process models.
Expert Syst. Appl. 65: 194-211
(2016)

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 84

Conformance Checking with Declare Analyzer

A B

[booleanValue = True]

A B

[integerValue > 5]

[between 3 and 5 hours]

activation condition

time condition

target condition

[booleanValue = True]

A

[integerValue > 5]

[between 3 and 5 hours]

[booleanValue = True]

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 85

Conformance Checking with Declare Analyzer

A B

[booleanValue = True]

A B

[integerValue > 5]

[between 3 and 5 hours]

activation condition

time condition

target condition

[booleanValue = True]

A

[integerValue > 5]

[between 3 and 5 hours]

[booleanValue = False]

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 86

Conformance Checking with Declare Analyzer

A B

[booleanValue = True]

A B

[integerValue > 5]

[between 3 and 5 hours]

activation condition

time condition

target condition

[booleanValue = True]

A

[integerValue > 5]

[between 3 and 5 hours]

[booleanValue = False]

vacuous

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 87

Conformance Checking with Trace Alignment

A B

[booleanValue = True]

A B

[integerValue > 5]

[between 3 and 5 hours]

activation condition

time condition

target condition

A

[between 3 and 5 hours]

[booleanValue = False]

[booleanValue = True] [integerValue <= 5]

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 88

Conformance Checking with Trace Alignment

A B

[booleanValue = True]

A B

[integerValue > 5]

[between 3 and 5 hours]

activation condition

time condition

target condition

[booleanValue = True]

A

[integerValue > 5]

[< 3 or > 5 hours]

[booleanValue = False]

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 89

Conformance Checking with Trace Alignment

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 90

Trace Alignment

<A A D F C D E>

Massimiliano de Leoni, Fabrizio M.
Maggi, Wil M. P. van der Aalst:
Aligning Event Logs and
Declarative Process Models for
Conformance Checking. BPM
2012: 82-97

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 91

Trace Alignment

<A A D F C D E>

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 92

Trace Alignment

<A A D F C D E B>
<A A D F C D E>

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 93

Trace Alignment

<A A D F C D E>

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 94

Trace Alignment

<A A D F C D E>

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 95

Trace Alignment

<A A D F C D E>
<A A D F C D E>

A B

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 96

Optimal Alignments

Modifications have a cost!

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 97

Optimal Alignments

Modifications have a cost!

AUTOMATED PLANNING

Giuseppe De Giacomo, Fabrizio Maria
Maggi, Andrea Marrella, Fabio Patrizi:
On the Disruptive Effectiveness of
Automated Planning for LTLf-Based
Trace Alignment. AAAI 2017: 3555-
3561

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 98

Conformance Checking

rulemining.org

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 99

Roadmap

Automated Process Discovery

Compliance Monitoring

Conformance Checking

Log Generation

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 100

Log Generation

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 101

Log Generation

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 102

Log Generation

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 103

Log Generation

#traces in the log

#events in a trace

…

Exploit (E)
Malware

Detection (M)

Start Session

(S)

Close Session

(C)

not coexistence

responded
existence

precedence

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 104

❑ Log generation can be encoded in Answer Set Programming

(ASP) using predicates and rules to define:
o Each constraint automaton of the input model

o The length of a trace to be generated

o The requirement that every automaton ends up in a final state in the last time

point of the generated trace

❑ Predicate trace is the guessed predicate and contains a

sequence of activities satisfying all the input constraints

❑ To generate a solution for the guessed predicate, an ASP

solver can be used

o e.g., Clingo

Log Generation with ASP

Francesco Chiariello, Fabrizio M.
Maggi, Fabio Patrizi: ASP-Based
Declarative Process Mining. AAAI
2022: 5539-5547

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 105

Log Generation

rulemining.org

Declarative Process Mining for Software ProcessesAlman, Donadello, Maggi 106

For Python Users…

https://github.com/ivanDonadello/Declare4Py

Thank you

for your attention!

	Sezione predefinita
	Slide 0: Declarative Process Mining for Software Processes: The RuM Toolkit and the Declare4Py Python Library
	Slide 1: Declarative Process Mining for Software Processes: The RuM Toolkit and the Declare4Py Python Library
	Slide 2: Process Mining
	Slide 3: Event Logs
	Slide 4: Procedural Process Models
	Slide 5: The Declarative Approach in a Nutshell
	Slide 6: The Declarative Approach in a Nutshell
	Slide 7: Motivation for the Declarative Approach
	Slide 8: Motivation for the Declarative Approach
	Slide 9: Process Mining for Software
	Slide 10: Paradigms
	Slide 11: Procedural Paradigm
	Slide 12: Procedural Paradigm
	Slide 13: Procedural Paradigm
	Slide 14: Theory vs. Practice
	Slide 15: Declarative Paradigm
	Slide 16: Declarative Paradigm
	Slide 17: Declarative Paradigm
	Slide 18: Declarative Paradigm
	Slide 19: Closed World vs Open World
	Slide 20: Declare Process Modeling Language
	Slide 21: Visual Notation of Declare
	Slide 22: Visual Notation of Declare
	Slide 23: Unary Declare Templates
	Slide 24: Binary Declare Templates
	Slide 25: Binary Declare Templates
	Slide 26: Formal Semantics of Declare
	Slide 27: Multi-Perspective Declare (MP-Declare)
	Slide 28: Roadmap
	Slide 29: Process Discovery from knowledge intensive data
	Slide 30: Process Discovery from knowledge intensive data
	Slide 31: Process Discovery from knowledge intensive data
	Slide 32: Procedural Process Discovery
	Slide 33: Procedural Process Discovery
	Slide 34: Declarative Process Discovery
	Slide 35: Declarative Process Discovery
	Slide 36: Declarative Process Discovery
	Slide 37: Discovery algorithm
	Slide 38: A Parenthesis on Query Checking
	Slide 39: A Parenthesis on Query Checking
	Slide 40: Query Checking
	Slide 41: Discovery algorithm
	Slide 42: Discovery algorithm
	Slide 43: Discovery algorithm
	Slide 44: Discovery algorithm
	Slide 45: Discovery algorithm
	Slide 46: Discovery algorithm
	Slide 47: Discovery algorithm
	Slide 48: Discovery algorithm
	Slide 49: Discovery algorithm
	Slide 50: Discovery algorithm
	Slide 51: Discovery algorithm
	Slide 52: Discovery algorithm
	Slide 53: Discovery algorithm
	Slide 54: Discovery algorithm
	Slide 55: Discovery algorithm
	Slide 56: Discovery algorithm
	Slide 57: Discovery algorithm: Pruning
	Slide 58: Discovery algorithm: Pruning
	Slide 59: Discovery algorithm: Pruning
	Slide 60: Discovery algorithm: Pruning
	Slide 61: Discovery algorithm: Pruning
	Slide 62: Process Discovery
	Slide 63: Roadmap
	Slide 64: Compliance
	Slide 65: Compliance Models
	Slide 66: Compliance Models
	Slide 67: Compliance Models
	Slide 68: Compliance Models
	Slide 69: RV-LTL Semantics
	Slide 70: RV-LTL Semantics
	Slide 71: RV-LTL Semantics
	Slide 72: RV-LTL Semantics
	Slide 73: Monitoring Approach
	Slide 74: Monitoring Approach
	Slide 75: Monitoring Approach
	Slide 76: Monitoring Approach
	Slide 77: Monitoring Approach
	Slide 78: Monitoring Approach
	Slide 79: Monitoring Approach
	Slide 80: Monitoring Approach
	Slide 81: Compliance Monitoring
	Slide 82: Roadmap
	Slide 83: Conformance Checking with Declare Analyzer
	Slide 84: Conformance Checking with Declare Analyzer
	Slide 85: Conformance Checking with Declare Analyzer
	Slide 86: Conformance Checking with Declare Analyzer
	Slide 87: Conformance Checking with Trace Alignment
	Slide 88: Conformance Checking with Trace Alignment
	Slide 89: Conformance Checking with Trace Alignment
	Slide 90: Trace Alignment
	Slide 91: Trace Alignment
	Slide 92: Trace Alignment
	Slide 93: Trace Alignment
	Slide 94: Trace Alignment
	Slide 95: Trace Alignment
	Slide 96: Optimal Alignments
	Slide 97: Optimal Alignments
	Slide 98: Conformance Checking
	Slide 99: Roadmap
	Slide 100: Log Generation
	Slide 101: Log Generation
	Slide 102: Log Generation
	Slide 103: Log Generation
	Slide 104: Log Generation with ASP
	Slide 105: Log Generation
	Slide 106: For Python Users…

	Trace Alignment
	Slide 107

